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Summary. Unit subduced cycle indices (USCIs) are applied to the enumeration 
of isomers derived from a non-rigid parent molecule, the non-rigidity of which 
stems from bond-rotations. The parent is divided into a rigid skeleton of 
G-symmetry and mobile moieties of H-symmetries, where each mobile moiety is 
linked to a root that is a terminal vertex of the skeleton. In the first step, isomeric 
mobile moieties are enumerated with respect to the H-symmetry in terms of 
USCIs for H. Second, the mobile moieties counted are regarded as substituents 
on the vertices of the rigid skeleton. This formulation allows us to enumerate 
mobile isomers by means of USCIs for the G-symmetry. 
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1. Introduction 

Isomer enumeration has been extensively studied using the P61ya-Redfield 
theory [1, 2]. Comprehensive reviews have appeared to show the usefulness of 
this theory [3-6]. Recently, this theory has been applied to the enumeration of 
organic reactions [7]. Double coset algebra has also been applied to isomer 
enumeration [8]. These enumerations deal with molecular formulas of isomers 
and take no account of their spatial symmetries. 

More recently, isomer enumerations taking into account molecular formulas 
and spatial symmetries have been discussed using tables of marks [9, 10] and 
combining double cosets and framework groups [11]. A method using unit 
subduced cycle indices has been reported to solve this type of enumerations [12]. 

Systematic enumeration of non-rigid molecules has been presented in terms 
of "coronas" by Ptlya [1]. This concept is essentially equivalent to wreath 
products. A generalized wreath product method has been proposed for the 
enumeration of stereo and positional isomers [13]. Non-rigid cyclohexane iso- 
mers have been counted [ 14]. However, these enumerations of non-rigid isomers 
have not taken into consideration the spatial symmetries of the isomers 
counted. We will report here the systematic enumeration of non-rigid isomers 
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with respect not only to their molecular formulas but also to their symmetries. 
This manipulation reveals some advantages of the method that uses unit sub- 
duced cycle indices. In the present paper, the term "non-rigid" is used in the 
limited sense of rotations about bonds, although a conventional usage of this 
term involves torsions as well as rotations [15]. 

2. Orbits for non-rigid molecules 

When a molecule is considered to be a three-dimensional (3D) object, its ligands 
are classified into several equivalence classes. These equivalence classes are called 
orbits in the terminology of permutation-group theory [16, 17]. Each of the 
orbits corresponds to a coset representation (CR) G(/G~) in one-one fashion, 
where G is a (point) group characterizing the symmetry of the molecule and Gi 
is a subgroup of G [12]. The assignment of the CR (G(/Gi)) to each orbit is 
accomplished using a table of marks for G-symmetry [18]. For a non-rigid 
molecule the assignment should be modified from the viewpoint of wreath 
products [1] and generalized wreath products [5]. 

For simplicity of discussion, we take account of bond-rotation non-rigidity 
only. We may then consider a non-rigid molecule to consist of a rigid skeleton 
and mobile moieties. The non-rigid skeleton is defined as a 3D-object that is 
invariant to any rotation about the bonds contained in the skeleton. The mobile 
moiety is defined a 3D-object that contains terminal atoms and that is itself 
invariant to any rotation about the bonds contained in the moiety. Each of the 
moieties is attached to the rigid skeleton through a root that is a central atom of 
the moiety as well as a terminal vertex of the rigid skeleton. For example, Fig. 
1 illustrates 2,2-dimethylpropane (Fig, la), in which the five carbons construct a 
rigid skeleton (Fig. lb) and each set of three hydrogens and a central carbon 
(Fig. lc) constitute a mobile moiety. We consider such terminal hydrogens to be 
substitution positions. 

The four roots of the rigid skeleton (Fig. lb) construct an orbit which is 
subject to a CR Td(/C3v) [12]. The three vertices of the mobile moiety (Fig. lc) 
belong to an orbit governed by a CR C3v(/Cs). Hence, the non-rigid molecule 
(Fig. la) is represented by Td(/C3v)[C3v(/Cs)]. We refer to this as the extended 
wreath product (EWP) notation in the present paper, since each CR is a 
permutation representation and such a combination can be regarded as a kind of 
wreath product. Since the length of the G(/G~) orbit is represented by IG/IG, I, 
the number of vertices to be considered is represented by (ITd / C3~ ) × ( C3~ 1/ 
ICs i) = (24/6) x (6/2) = 12. 

1 2 

ocr~=,.l~. 2 e-,~---e4 1 ° ~  °3 
T.(; E3~,) E3,(/C . ) 

a b c 

Fig. 1. A r~(IC~)[C3~(IC~)] 
molecule. O, roots; ©, 
vertices 
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3. Mobile moieties 

3.1. Unit subduced cycle indices for mobile moieties 

Although the mathematical background is essentially the same as described in 
the previous paper [12], we shall define unit subduced cycle indices (USCIs) for 
a given mobile moiety. If  the moiety consists of several atoms whose symmetrical 
properties are characterized by a permutation representation (PH), we can reduce 
Pn into the sum of coset representations in terms of 

CH 
e , =  Y, (1) 

p = l  

where H is a (point) group for describing the symmetry of this moiety, the 
symbol lip (p = 1, 2 . . . . .  CH) denotes a representative of conjugate subgroups 
and ?p represents the multiplicity of the coset representation H(/Itp). The 
multiplicity ?p can be algebraically obtained [12]. 

The permutation representation PH acts on a set of all substitution positions 
in the moiety, which is considered as a domain, 

= {q,1, q'l l}. (2) 

Equation (1) provides a partition of 7 j into several sets of equivalent positions. 
If  we subduce the CR H(/Hp) by the Hq subgroup of H, we can obtain the 

subduced representation (SR), H(/Hp) ~ Hq. This SR reduces to a sum of coset 
representations 

H(ll-Ip) Hq = 6pqrHq(IHq,), (3) 
r ~ l  

where the symbol Hqr (r = 1, 2 , . . . ,  Uq) denotes a representative of conjugate 
subgroups of Hq ; and the non-negative integer t~pq r represents the multiplicity of 
the CR Hq(/Hq~). The multiplicity can be algebraically obtained by means of the 
inverse of a mark table [12]. The SR, H(/Hp) ~ Hq, is determined by H, Hp, and 
Hq; this means that the multiplicity 6pqr can be predetermined as an integer 
constant. Since the length of the Hq(/Hqr) orbit is represented by 

dqr = Inq  I/IHqr I, (4) 

we can define a unit subduced cycle index (USCI) corresponding to Eq. (1) as 

Z(H(IHp) $ ttq; taqr) = f i  (taqr) ~pq" (5) 
r = l  

for p = 1, 2 . . . . .  Ca and q = 1, 2 . . . . .  Cn, where the t-variables are dummy 
symbols. The method of calculating USCIs was reported elsewhere [12]. It is 
convenient to predetermine such USCIs in the form of a table of USCIs for every 
point group. For example, Tables 1 and 2 list USCIs for C3, and Ta groups. Note 
that these tables contain s-variables in place of t-variables, since the variables are 
just dummy symbols. 
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Table 1. USCIs for C3~ point group 

S. Fujita 

Unit subduced cycle index a 

+Cl ~C5 $C3 lC3v 

C~o ( /C , )  s? (b 6 ) s3, (c 3 ) s~ (b~) s 6 (%) 
C3~(/C~) sS(b 3 ) S lS2(a lc2)  s3 (b3) 33 (as) 
c~o ( /c3)  s~ (bZl) s 2 (c 5 ) s 2 (b 2 ) s 5 (c 5 ) 
C3v (/Csv) s 1 (b 1 ) s I (a t ) s I (b,) s 1 (a I ) 

A variable in parentheses is a USCI with chirality fittingness 

The multiplication of  USCIs (Eq. (5)) over all o f  the orbits obtained by Eq. 
(1) produces a subduced  cycle index (SCI) for each subgroup (Hq) as follows: 

CH 

Z I ( H q ;  tdqr) = H [ Z ( H ( / H p )  J, Hq;  tdqr)]~" 
p = l  

CH 

= (taq,) a'q" ?P = H ( tdqr ) '= '  (6) 
r = l  r = l  

for q = l, 2 . . . . .  C x  [12]. The concrete  SCI can be ob ta ined  from a table o f  
USCIs such as Tables 1 and 2. 

Table 2. USCIs for T a point group 

c,  c2 c~ c~ s~ D2 C5o C~ O2~ r r~ 

Td(/CI ) s24 $212 $12 $8 s6 s46 $6 $4 s83 s122 $24 
(b~4) @~2) (c~2) (638) (c~) (64 ~) (c~) (c, 6) (c~) (b~2) (c~,) 

Td(/C2 ) S~2 4 4 S62 S4 2 2 S 6 2 2 S1$2 S2S4 $12 
(b] 2) (bab 4 ) (c 6 ) (b 4 ) (c~c 2 ) (b6~) (c2c24) (c 2 ) (ca) (b 2 ) (c,2) 

r~(/c=) $I ~ s~ 2 ~ s~ sa sa ~ 2 $~$~ $~$. S2S4 $12 S12 81$ 2 
(bl 2) (b 6) (a2c52) (b 4) (ca) (ba) (a2c 2) (aa2e6) (a4cs) (b,z) (a,2) 

r~(/co s~ s 4 s~ $,~352 s~ s~ $4 ~ $256 ~ s~ s, 
(b80 (b 4) (c 4) (b~b 2) (e 2) (b42) (c~) (CzC6) (Cs) (b42) (cs) 

Ta(IS4) s 6 s1$22 2 S23 $23 Sl 2S4 S23 S254 $6 $254 S6 S6 
(b 6 ) (b~b 2 ) (c 3 ) (b 2 ) (a2c4) (b~) (c2 c4) (c6) (a2c,) (b6) (a6) 

rAID2) s 6 $? s~ $3 ~ s~ s? s~ s~ s~ $~ s~ 
(b 6) (b?) (c 3) (b 2) (c2 3) (bt 6) (c 3) (c6) (c 3) (bE) (c6) 

ra(/C2.) s? s~s~ s~s~ s] s2s, s32 s~s4 s~ s2s4 s6 s6 
(b?) (b2b 2 ) (a2c 2 ) (b23) (CeC4) (b 3 ) (a2c4) (a 2 ) (a2 c4) (b6) (a6) 

TA/cso) s~ $~ $~5 sxs~ ~4 s, s~ s,s~ $, $~ s~ 
(b 4) (b~) (a2c2) (blb3) (c4) (ha) (a22) (alas) (a4) (b4) (a4) 

ra(/O2a) s 3 s 3 sis5 S3 $1S2 $13 SiS2 S3 $152 $3 S3 
(b~ 3 ) (b~) (a,c2) (b3) (a,c5) (b 3 ) (alc2) (as) (a, c5) (b3) (a3) 

r A I r )  s~ $~, s2 s ~, $2 $~, $5 $2 $2 s~ $2 
(b~ 2) (b~) (c2) (b~ 2) (a2) (b~ 2) (c2) (c2) (c2) (b 2) (c2) 

r ~ ( / r 2  s, $1 S 1 $1 $1 $1 81 $1 $1 $1 $1 
(b0 (bl) (al) (bl) (al) (b0 (al) (al) (at) (hi) (al) 

ms, 1/24 1/8 1/4 I/3 1/4 0 0 0 0 0 0 
i 
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3.2. Enumeration of mobile moieties 

This process is essentially equivalent to that for rigid molecules [12]. Suppose 
that a set of substituents are selected from the codomain, 

X = {Xl, x2 . . . . .  Xlaq}. (7) 

If we select I~[ of substituents from X and put them onto the positions of ~v, 
such a function, 

y :  --, x ,  (8) 

is an expression of the resulting configuration. Since the domain ~ is divided 
into orbits, 7Jpr (p = 1, 2 , . . . ,  CH, y = 1, 2 . . . . .  7p), in terms of Eq. (1), we can 
describe the function y in detail. If n ~  of xr's (r = 1, 2 , . . . ,  IX]) occupy the orbit 
(~er), the weight (molecular formula) of this function (configuration) is repre- 
sented by 

we(y) I-I "Y) = XrP'gr , (9) 
p = l ) , = l  r = l  

where n (y)~r is greater than 0 if ~rr contains x,; otherwise, it is equal to 0. 
Obviously, the following equation holds for this case: 

CH ~ 14 
1-I H = I 1. (lO) 

p = l ? = l r = l  

Let Q~q be the number of such isomeric moieties (y~q) with the weight we that 
are invariant (or fixed) under the operation of Hq. Then, O~q is obtained by 
means of generating functions [12], i.e., 

Lemma 1. 

Z Q~qW~ = z [ ( n q  ; tdqr) ( 1 1) 

for q = 1, 2 . . . . .  CH, in which every term of the right-hand side is substituted by 

% = x:qr. (12) 
r=l 

This generating function (Eq. (12)) is here called a moiety-figure inventory. The 
number Q~q contains multiple counting because of conjugate subgroups. Hence, 
the net number of mobile moieties (B~p) is obtained by 

Theorem 1 (enumeration of mobile moieties). 
CH 

QCq = E g&mpq (13)  
p=l 

for q = 1, 2 . . . . .  CH, where Bcp is the number of Hp, we-moieties, mpq is an 
pq-element of the mark table of H-group. 

The proof of Theorem 1 is essentially equivalent to that described for the 
enumeration of rigid molecules [ 12]. 
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When F?lqp is an element of the inverse of the mark table, Eq. (13) is 
converted into 

CH 
Bcp= ~ Ocqrhqp. (14) 

q=l  

This result is alternatively expressed in the form of a matrix, i.e., 

Ill 
W 1 "B11 BI2 

Wl¢l ¢11 B1¢12 

• • • HCH 

• "• Bxc u 

• . .  n 2 c  H [ ' 

• . .  nlelcHJ 

(15) 

where 14[ denotes the number of monomials generated. Each element (Bep) 
indicates the number of  isomeric moieties, yep ( 4 = 1 , 2  . . . .  ,1¢1 and 
p = 1, 2 , . . . ,  CH). In this enumeration, if H v is proper, every pair of  antipodes 
is counted once. This fact should be taken into consideration in the next step of  
enumeration• The following example illustrates the enumeration of mobile 
moieties. 

Example 1 (A C3~(IC~) mobile moiety (Fig. lc)). Suppose that the three posi- 
tions (©)  of  Fig. lc are occupied by either X or Y. Then, the given codomain is 
X = {X, Y}. If  we number the positions sequentially, we obtain a domain which 
is expressed by T = {1, 2, 3}. This domain is subject to C3~(/C~). We construct 
the SCIs for this case, using the C3~(/C~) row of Table 1. We introduce a 
moiety-figure inventory, Sd = X a +  ya, into these SCIs to produce generating 
functions for Qeq, i.e., 

s 3 = ( X +  y)3 for C1, (16) 

sis2 = (X + Y)(X 2 + y2) for Cs, (17) 

and 

S3 = X3 + y3 for  Ca, (18) 

s3 = 2(3 + y3 for C3~. (19) 

The expansion of  these equations affords a matrix (QCq), which is in turn 
multiplied by the inverse of a mark table of  C3~, i.e., 

Cl C~ 
X 3 "[~ 1 
X2y 3 1 
X Y  2 1 0 
y3 1 1 

(QCq) 

G G~ c, c G c~o 

' i ° ° i) [i ° ° il 
0 0 --61 1 0 = 0 1 0 . 

! 
0 0 5 1 0 
1 - 1  - ½  0 0 

the inverse (Bcp) 

(20) 

The resulting matrix affords the numbers of  respective moieties, which are 
depicted in Fig. 2. All of  the mobile moieties collected in Fig. 2 are achiral. 
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Weight (wk) 

Weight (y~p) 

Symmetry 

X X Y 
I X X ', Y X , x\, ,,/ \I/Y 
C C C 

X 3 X2y X y  2 

YI~ Y22 Y32 

C3v Cs Cs 

Orbit C3v(/C s) [s(/C1) Cs(/C I) 
Cs(/C s) Cs(/Cs) 

Fig. 2. Mobile moieties based on a C3~(/Cs) orbit 

Y 
Y m \ l J  

C 

y3 

Y~4 

C3v 
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4.  N o n - r i g i d  m o l e c u l e s  

4.1. Unit subduced cycle indices with chirality fittingness for a non-rigid molecule 

Suppose that the rigid skeleton of a non-rigid molecule of  G-symmetry has [~[ 
substitution positions, which construct a domain, 

= {~b~, ~bz . . . .  , q~l~l}" (21) 

When this domain is permuted by a permutation representation Pa, this can be 
reduced into the sum of CRs, i.e., 

CG 

P~ = Y~ m6'(/6',), (22)  
i = l  

wherein ~i is the multiplicity of  the CR, G(/Gi). This equation divides the 
domain (4) into several orbits, 

• ;~ ( i  = 1, 2 . . . . .  C x ;  = = 1, 2 . . . .  , =;) ,  ( 2 3 )  

each of  which is subject to the ~th CR, G(/Gi). 
In terms of  the subduction of  the CR represented by 

G(/G,.) $ Gj = £ [30kGj(/Gjk), (24) 
k = l  

we define a USCI with chirality fittingness for this case as 

Z(G(/G~) $ Gj; Sajk) = f i  (Sdjk) #Uk, (25) 
k = l  

for i = 1, 2 . . . .  , Ca and j = 1, 2 . . . . .  C~, where 

= Ic, I/Ic, k I. (26) 

The dummy variable $ is replaced by the variable (a) for the case where both Gj 
and Gjk are improper; by the variable (b) for the case where both Gj and Gjk are 
proper; or by the variable (c) for the case where Gj is improper and Gjk is proper 
[19]. Even if two or more orbits are governed by the same CR, they can take 
different kinds of  mobile moieties as substituents. Hence, the dummy variable 
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should be dependent upon the respective orbit. This is designated by the symbol 
$(~), in which the superscript (is) indicates the dependence upon the sth G(/G~) 
orgit, i.e., ~ .  In this case [ 12, 20], the corresponding subduced cycle index (SCI) 
is expressed by 

CG oti 

Z I ( G j ;  $(~q)) = I-I ]-1 Z ( a ( / G , )  .L Gj; $(~?) 
i = l  e L = l  

(~z ~ o) 

co ] 
= 1-[ ( j  = 1, 2 , . . . ,  (27) 

4•2. Enumeration o f  non-rigid isomers 

A non-rigid compound is regarded as a derivative of a G rigid skeleton, in which 
the sth G(/Gi)  orbit (~i~) is substituted by H~ i~) moieties, as is shown in Fig. 3. 
The mobile moieties are enumerated by Theorem 2 with respect to every ~ .  
Hence, all of the participants in Theorem 2 are dependent upon the orbit (~i~). 
These dependences are denoted by such a superscript (is) as appears in H I  ~), etc. 

Suppose that appropriate moieties are selected as substituents from a set of 
mobile moieties enumerated in the preceding section• In general, mobile moieties 
are either achiral or chiral depending on H~ n). We thus consider a set of 
I~] x C,(,~) moieties represented by 

** C l t ( i ~ )  "% [ 

_i Y~"~ ) y~) . . . . .  .r (i~),c.<,~) ll w1 ,,,,e, / r~'~) = WE y(2'~ ) Y(2~ ) " '"  Z 2Cn<,~) • 
• , 

Wl¢l LY[~irt .r 1¢12 "'{'~) " ' "  YI~Ic.<,.O 

(28) 

(i~) " • Note that we select a representative (y~p)) from each set of w~, Hp -momtles, 
since these are presumed to have the same weight. The number of such 
w¢,H~)-moieties has been given by Eqs. (14) and (15). Since there are the 

Rigid Mobile 
skelefon moiefy 

[3 H (i~) 

~ ~ y l .  HIi'}I/H~ "11 
ri(/G i) 

Fig. 3. Schematic representa- 
tion of a non-rigid compound 



Enumeration of non-rigid molecules 315 

corresponding antipodes for the respective isomeric moieties, we should consider 
another set of mobile moieties, i.e., 

, Hli~) H[i~) . . .  uric) . 
l a t  Ctl(i~ j "~t Wl l y~tT)~ --" P~)~i~)" "''. 4"~(i~) 3~(i~)~ li~)C. (i,) IIi 

~i~) = w2 yf~) Y(2'~ ) " "  ~ 2 c . ( , . >  , 

Wl¢l Y i ~  " " " ~1¢1: Y71¢.<")] 

(29) 

where each jT~)is the antipode of y~) .  If  fi~) = y~) ,  this represents an archiral 
moiety. Hence, we construct an effective set of mobile moieties as follows: 

Y(~) = Y~") u ~i~). (30) 

We then consider a function, 

f :  ~a  ~ Y(~') (31) 

for i = 1, 2 , . . . ,  Ca and ~ = 1, 2 . . . . .  ~ .  This function corresponds to a non- 
rigid derivative. If, in this function, an orbit ~t~ contains n<c~f) o f y ~  ) and ~ / f )  
of "~(i~) ~¢p, the weight (Wo) of the function ( f )  is represented by 

Wo(f) = r I  I~ (Y~p)) n(~i~f) rI H (Y,~)~P) ep(i> , ( 3 2 )  
i = l  f p = l  

where 

and 
n~/s  ) > 0, if ~,., contains y~ ) ;  otherwise = 0 

•(i•) contains )7~) • otherwise = 0. Cp(S) > 0, if ~;~ 

The subscript (0) is a descriptor for differentiating the weights. 
The following lemma can be obtained by a slight modification of the method 

described elsewhere [20]. 

Lemma 2. Let ao be the number of  derivatives with the weight (Wo) that are 
• . ) . 
mvartant (or fixed) on the operatton of  Gj. We can estimate go: in terms of  
generating functions, 

E Croj Wo = ZI(Gj;$~j~ )) (33) 
o 

for j = 1, 2 , . . . ,  Co, in which every variable of  the right-hand side is substituted by 
figure inventories, 

= 

CH(i~,) 

~, Bq~_)(vf~.))aJ k c p  - ¢ ~ , ,  for $ = a, (34) 
p = l  

improper 

CH(~) CH(~) 

2 2 B~)(Y(¢~)) a:k + • 2 B~)(Y(¢i~)) a:k 
p = l  ¢ p = l  

improper proper 

CH (ioO 

+ 2 2 B~)(Y~))  ajk for $ = b, (35) 
p = l  ¢ 

proper 
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CHffa) CH(~) 
c(iC,) dyk = ~ ~'~ B~)(Y(iP) dig + 2 ~ ~'a ~z.lepl~(i°t)[\.vep"(i°~)~'(ict)'~djk/2.V~p ] for $ = c. (36) 

p = l  ~ p = l  
improper proper 

The summation over p is restricted within either improper or proper point 
groups according to the indication shown below the symbol. When all y~) ' s  in 
Wo(f) are replaced by ~(;')' y~p s and vice versa, the Wo(f) is presumed to convert 
into fro(f).  Since the resulting molecule is antipodal to the original one, we 
should sum up the coefficients of Wo(f) and Wo(f) in order to produce a0j. 
Note that the present enumeration is concerned with every pair of antipodes. 

Now we arrive at 

Theorem 2 (enumeration of Wo, G~-isomers). Let Ao~ be the number of I4Io, Gi- 
isomers. This is calculated by using aoj (Lemma 2) by means of 

CG 
aoj = ~ Ao~Mij for j = 1, 2 . . . . .  Ca, (37) 

i = 1  

or inversely, 
CG 

Aoi = ~ aoi~. t for i = 1, 2 . . . . .  Ca, (38) 
j = l  

wherein M 0 is the O-element of a mark table (Mij) for the G-group and ()glji) 
denotes the inverse of  the matrix (Mu). 

For illustrating Lemma 2 and Theorem 2, we further examine the case of 
Example 1. 

Example 2 (enumeration of isomers based on 1). We assign dummy variables 
Y14, Y22, Y3z and Y44 to the mobile moieties counted in Example 1 (Fig. 2). Since 
this case contains no chiral moieties, we are allowed to consider $ to be s in 
Lemma 2. Thus, we obtain a figure inventory, 

Sd = ya4 + Ya22 + ya2 + yd .  (39) 

by means of Eq. (20). Since the rigid skeleton (Fig. lb) is subject to Ta(/C3v), the 
Ta(/C3v) row of Table 2 is selected to afford the following SCIs: 

S4 = ( Y I 4 + Y 2 2 + Y 3 2  + Y 4 4 )  4 for c1, (40) 
2 2 s z=(y~4+y~z+y~2+y2)  2 for (72 and C2~, (41) 

sEs2 = (Y14 + Y22 + Y32 + Y44)2(y~4 + y22 + YEz + y 2 )  for C~, (42) 

SlS3=(y~g+Y22+YaE+Y44)(y34+y322+yaE+y 3) for Ca and C3~, (43) 

and 
4 4 s4=Y14 + YEE + yg2 + y 4 for $4, D2, DEd, T, and Td, (44) 

according to Eqs. (27) and (33). These equations are expanded and the terms of 
the same powers are collected. In the present case, the terms are classified into 5 
types, which are designated by the following type index, [4] for y44, etc. (4 
terms), [31] for ya4y22, etc. (12 terms), [22] for 2 2 Y14YE2, etc. (6 terms), [211] for 
Y~4Y22Y32, etc. ( 12 terms), and [ 1111] for YI4YEEY32Y44 ( 1 term). The terms of the 
same type have equal coefficients to each other. Table 3 collects such coefficients. 

Table 3 is considered to be a matrix, which is in turn multiplied by the inverse 
of the mark table (Table 4). The resulting matrix (Table 5) shows the number of 
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Table 3. Coefficients derived from generating functions 

317 

Index C 1 C 2 C~ C3 $4 D2 C2v C3~ D~ T T a 

[~ 1 1 1 1 1 1 1 1 1 1 1 

[31] 4 0 2 1 0 0 0 1 0 0 0 
[22] 6 2 2 0 0 0 2 0 0 0 0 
[211] 12 0 2 0 0 0 0 0 0 0 0 
[1111] 24 0 0 0 0 0 0 0 0 0 0 

Table 4. The inverse of  the mark  table of  T d 

rd Td ra rd ra ra Ta Ta rd ra ra 
( /co (/c2) (/c~) (/c3) (/&) ( /02) (/C2~) (/c~o) (/o~) (/r) (/r~) 

CI 2~ 0 0 0 0 0 0 0 0 0 0 
C2 __1 41 0 0 0 0 0 0 0 0 0 

l 0 1 0 0 0 0 0 0 0 0 c~ -~ 
C3 --61 0 0 21 0 0 0 0 0 0 0 

S 4 0 _1  0 0 1 0 0 0 0 0 0 

1 0 0 0 0 0 D2 ,~ - ~ o o o 

c2o 1 - ~-~ -1-2 o o o !2 o o o o 
C3~ ½ 0 -1  -½ 0 0 0 1 0 0 0 

1 0 0 l t 1 0 1 0 0 

1 0 0 1 0 1 0 0 0 1 0 T -~ --~ -g  
1 0 1 1 0 1 0 - 1  - 1  1 T d --~ ~ ~ --~ 1 

Table 5. Enumerat ion of  isomers derived from 1 

Index C1 C2 C~ C~ $4 D2 C2~ Car D2a T Ta 

[~  0 0 0 0 0 0 0 0 0 0 1 
[31] 0 0 0 0 0 0 0 1 0 0 0 
[22] 0 0 0 0 0 0 1 0 0 0 0 
[211] 0 0 1 0 0 0 0 0 0 0 0 
[1111] 1 0 0 0 0 0 0 0 0 0 0 

isomers of each type and each subsymmetry. Figure 4 depicts all 35 isomers 
(35 --- 4 + 12 + 6 + 12 + 1), each of which is denoted by the type index and the 
point group of the respective rigid skeleton. In this case, the Ta, C3~, C2~, Cs, and 
C1 symmetries of the rigid skeletons corresponds to the type indices, [4], [31], [22], 
[211], and [1111], respectively. It should be noted that the symmetries of such 
non-rigid molecules are designated by extended wreath product (EWP) symbols. 
For example, the two [4]-structures listed in Fig. 4 [21] are denoted as 
Td(/C3v)[C3v(/Cs) ] and Td(/C3v)[Cs(/C1,/Cs) ]. If we assign each molecule to the 
point group of its conformation of the highest symmetry, the Td(/C3v)[C3~(/Cs) ] 
molecule would belong to Td symmetry. On the other hand, the Td(/C3~)[C~(/C1, 
/Cs)] molecule has D2d symmetry in its conformation of the highest symmetry. 
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)< 12 

Xgy 3 
X3y 9 

T d [ 4 ]  

Xlly, Xy rl 

C3v [311 

X1oyZ X2y Io 

;L 
[2v [221 C3v [311 

E s [211] C3v [31] C3v [311 

Xsy ~ 
X4y 8 

X7y S 

C s [211] C s [21t] 

;L 
Czv [22] 

& 
T d [4.] 

xSy 7 

C s [211] C s [211] E s [211] C3~ [31] 

X6y 6 

C I [1111] [Zv [221 

C3v [311 C3v [311 

CZv [22] 

Fig. 4. Isomers derived from 1 

If  all y~) ' s  and ~ ' s  (p  = 1,2 . . . . .  CH(i.)) have the same weight (w~n)), 
Lemma 2 is converted into a more convenient form: 

Lemraa 3 (modified enumeration). The variables (a~]), b~j~ ), and c(~ ~) can be 
rewritten for the present case: 

a(~ ) = ~ r¢a(W(e"))dJ k for  $ = a, (45) 
ff 
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= E + 2 E 

and 

e(Aj] ) = E x~a(w{i=)) ajk + 2 ~" x¢c(w~i~))a, k 

where ~c~ and tc~ are represented by 
Clt(i~) 

p = l  
improper 

and 
CH(icO 

p = l  
proper 

for $ = b, (46) 

for $ = c, (47) 

(48) 

(49) 

For illustrating Lemma 3, we again treat the case of Examples 1 and 2 in 
detail. 

Example 3 (enumeration based on 1). Since all of the mobile moieties counted in 
Example 1 are achiral, we can use the symbol (s) in place of $. From the data 
of Eq. (20), we obtain xea = 1 for all w~. Hence, Lemma 3 yields a figure 
inventory, 

Sd = X 3a + (X2Y)  d + (XY2) d + y3a (50) 

for this case. This figure inventory is introduced into SCIs which are derived 
from the Td(/C3v) row of Table 2. Thereby, we obtain 

s 4 = ( X a + X 2 y + x y 2 +  y 3 ) 4  for C~, (51) 

S 2 = ( X 6 _ ~ X 4 y 2 . q _ X z y 4 . . l _  y 6 ) 2  for C2 and C2v, (52) 

s21s2 = 0 ( 3  q_ X 2 y  q_ X y 2  q_ y 3 ) 2 ( X 6  _]_ X 4 y 2  + X 2 y 4  q_ y 6 )  for Cs, (53) 

SlS3 = (X3..l_ ~2y..l_ Xy2 .+.  y3)(Xg..]_ ,~6y3 ..~. X 3 y r  q_ yg)  forC3and C3v, (54) 

and 

s4=X12_FXSy4q_X4y8  + y12 for $4, D2, D2d, T, and Td. (55) 

The expansion of these generating functions and the collection of the terms of 
the same power give such coefficients as listed in Table 6. This table as a matrix 

Table 6, Coefficients derived from generating functions 

cl c2 c~ c3 s, 02 c2o c3~ 02, r rd 

X12, y12 1 1 1 1 1 1 1 1 1 1 1 
XIly,  X Y  11 4 0 2 1 0 0 0 1 0 0 0 
)(1oy2, X2ylo 10 2 4 1 0 0 2 1 0 0 0 
X9 y3, X'3 I19 20 0 6 2 0 0 0 2 0 0 0 
XSY 4, X4y  s 31 3 7 1 1 1 3 I 1 1 1 
X 7 yS, X 5 y7 40 0 8 1 0 0 0 1 0 0 0 
x ' rY 6 44 4 8 2 0 0 4 2 0 0 0 
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Table 7. Enumeration of isomers derived from 1 

S. Fujita 

Term C l C 2 C~ C 3 S 4 D 2 C2~ C3~ D2a T T a 

xl2, y12 0 0 0 0 0 0 0 0 0 0 1 
x l l Y ,  X Y  ~1 o o o o o o o 1 o o o 
x l ° y  2, x z Y  1° o o o o o o 1 1 o o o 
~9 y3, X3 y9 0 0 1 0 0 0 0 2 0 0 0 
X8 y 4, x a  y s 0 0 3 0 0 0 0 1 0 0 0 
x T y  5, X s y  7 0 0 3 0 0 0 0 1 0 0 0 

X6 y 6 1 0 0 0 0 0 2 2 0 0 0 

is mul t ip l ied  by the inverse (Table  4) to afford Table  7, in which the value at  the 
intersect ion o f  each subsymmet ry  co lumn and  the te rm X m yn row indicates  the 
number  o f  the C s X m  Y , , - i s o m e r s  with the subsymmetry .  

F igure  4 also i l lustrates  these results,  which are des ignated  by  .e~mY n. Al-  
though  Examples  2 and  3 con ta in  no  chiral  mobi le  moiet ies ,  the present  m e t h o d  
can be app l ied  to a general  case tha t  involves chiral  as well as achira l  moiet ies.  

5. Conclusion 

Uni t  subduced  cycle indices (USCIs )  in t roduced  for  enumera t ing  isomers  der ived 
f rom a r igid skele ton [12] are p roven  to also be effective in count ing  non- r ig id  
isomers,  where the non-r ig id i ty  stems f rom ro ta t ions  a r o u n d  bonds ,  af ter  some 
modif ica t ions  and  extensions.  Thus,  a given non-r ig id  skele ton is d iv ided  into a 
r igid skele ton and  mobi le  moiet ies.  The  la t ter  moiet ies  are cons idered  a t t ached  to 
the vertices o f  the r igid skeleton.  This  fo rmula t ion  al lows us to app ly  the U S C I s  
to the mobi le  moiet ies  and  to  the rigid skeleton for  enumera t ing  such non-r ig id  
molecules.  
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