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Summary. Unit subduced cycle indices (USCIs) are applied to the enumeration
of isomers derived from a non-rigid parent molecule, the non-rigidity of which
stems from bond-rotations. The parent is divided into a rigid skeleton of
G-symmetry and mobile moieties of H-symmetries, where each mobile moiety is
linked to a root that is a terminal vertex of the skeleton. In the first step, isomeric
mobile moieties are enumerated with respect to the H-symmetry in terms of
USCISs for H. Second, the mobile moieties counted are regarded as substituents
on the vertices of the rigid skeleton. This formulation allows us to enumerate
mobile isomers by means of USCIs for the G-symmetry.
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1. Introduction

Isomer enumeration has been extensively studied using the Pdlya—Redfield
theory [1, 2]. Comprehensive reviews have appeared to show the usefulness of
this theory [3—6]. Recently, this theory has been applied to the enumeration of
organic reactions [7]. Double coset algebra has also been applied to isomer
enumeration [8]. These enumerations deal with molecular formulas of isomers
and take no account of their spatial symmetries.

More recently, isomer enumerations taking into account molecular formulas
and spatial symmetries have been discussed using tables of marks [9, 10] and
combining double cosets and framework groups [11]. A method using unit
subduced cycle indices has been reported to solve this type of enumerations [12].

Systematic enumeration of non-rigid molecules has been presented in terms
of “coronas” by Polya [1]. This concept is essentially equivalent to wreath
products. A generalized wreath product method has been proposed for the
enumeration of stereo and positional isomers [13]. Non-rigid cyclohexane iso-
mers have been counted [14]. However, these enumerations of non-rigid isomers
have not taken into consideration the spatial symmetries of the isomers
counted. We will report here the systematic enumeration of non-rigid isomers
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with respect not only to their molecular formulas but also to their symmetries.
This manipulation reveals some advantages of the method that uses unit sub-
duced cycle indices. In the present paper, the term “non-rigid” is used in the
limited sense of rotations about bonds, although a conventional usage of this
term involves torsions as well as rotations [15].

2. Orbits for non-rigid molecules

When a molecule is considered to be a three-dimensional (3D) object, its ligands
are classified into several equivalence classes. These equivalence classes are called
orbits in the terminology of permutation-group theory [16, 17]. Each of the
orbits corresponds to a coset representation (CR) G(/G;) in one-one fashion,
where G is a (point) group characterizing the symmetry of the molecule and G;
is a subgroup of G [12]. The assignment of the CR (G(/G;)) to each orbit is
accomplished using a table of marks for G-symmetry [18]. For a non-rigid
molecule the assignment should be modified from the viewpoint of wreath
products [1] and generalized wreath products [5].

For simplicity of discussion, we take account of bond-rotation non-rigidity
only. We may then consider a non-rigid molecule to consist of a rigid skeleton
and mobile moieties. The non-rigid skeleton is defined as a 3D-object that is
invariant to any rotation about the bonds contained in the skeleton. The mobile
moiety is defined a 3D-object that contains terminal atoms and that is itself
invariant to any rotation about the bonds contained in the moiety. Each of the
moieties is attached to the rigid skeleton through a root that is a central atom of
the moiety as well as a terminal vertex of the rigid skeleton. For example, Fig.
1 illustrates 2,2-dimethylpropane (Fig. 1a), in which the five carbons construct a
rigid skeleton (Fig. 1b) and each set of three hydrogens and a central carbon
(Fig. 1¢) constitute a mobile moiety. We consider such terminal hydrogens to be
substitution positions.

The four roots of the rigid skeleton (Fig. 1b) construct an orbit which is
subject to a CR T,(/C;,) [12]. The three vertices of the mobile moiety (Fig. 1c)
belong to an orbit governed by a CR G;,(/C,). Hence, the non-rigid molecule
(Fig. 1a) is represented by T,(/C3,)[C5,(/C,)]. We refer to this as the extended
wreath product (EWP) notation in the present paper, since each CR is a
permutation representation and such a combination can be regarded as a kind of
wreath product. Since the length of the G(/G,) orbit is represented by |G /|G;
the number of vertices to be considered is represented by (|T,|/|Cs,]) x (|Cs,
|C, ) = (24/6) x (6/2) =12.
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Fig. 1. A T,(/G3,)[C5,(/C))]
c molecule. @, roots; O,
b vertices
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3. Mobile moieties
3.1. Unit subduced cycle indices for mobile moieties

Although the mathematical background is essentially the same as described in
the previous paper [12], we shall define unit subduced cycle indices (USCIs) for
a given mobile moiety. If the moiety consists of several atoms whose symmetrical
properties are characterized by a permutation representation (Pg), we can reduce
P, into the sum of coset representations in terms of

P, = z" v, H(/H,), (1)

where H is a (point) group for describing the symmetry of this moiety, the
symbol H, (p =1,2, ..., Cy) denotes a representative of conjugate subgroups
and 7y, represents the multiplicity of the coset representation H(/H,). The
multiplicity y, can be algebraically obtained [12].

The permutation representation Py acts on a set of all substitution positions
in the moiety, which is considered as a domain,

YI={!/I15¢’17"'9'/’|‘I’|}' (2

Equation (1) provides a partition of ¥ into several sets of equivalent positions.

If we subduce the CR H(/H,) by the H, subgroup of H, we can obtain the
subduced representation (SR), H(/H,) | H,. This SR reduces to a sum of coset
representations

HUH,) LH, = 3. 8,0 H((Hy), 3

where the symbol H,, (r=1,2,...,v,) denotes a representative of conjugate
subgroups of H,; and the non-negative integer J,,,, represents the multiplicity of
the CR H,(/H,,). The multiplicity can be algebraically obtained by means of the
inverse of a mark table [12]. The SR, H(/H,) | H,, is determined by H, H,, and
H,; this means that the multiplicity J,, can be predetermined as an integer
constant. Since the length of the H,(/H,,) orbit is represented by

dy = lHq |/|qu I’ 4

we can define a unit subduced cycle index (USCI) corresponding to Eq. (1) as

Z(H(H,) LBy ta,) = T (1) )

for p=1,2,...,Cq and g=1,2,...,Cy, where the t-variables are dummy
symbols. The method of calculating USCIs was reported elsewhere [12]. It is
convenient to predetermine such USClIs in the form of a table of USCIs for every
point group. For example, Tables 1 and 2 list USCIs for C;, and T, groups. Note
that these tables contain s-variables in place of ¢-variables, since the variables are
just dummy symbols.
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Table 1. USCIs for C,, point group

Unit subduced cycle index?®

G 16 IG5 1Cyy
G, (/Cy) 55 (%) 53(c}) 53 (b3 56 (cq)
G, (/C)) s (63) s152(a1¢2) 53(b3) s3(as)
G, (/Cs) st (1) 55(c3) s3(63) 55 (c2)
Gy, (/Cs) s (8y) 5 (ay) 51(5y) sy (ay)

2 A variable in parentheses is a USCI with chirality fittingness

S. Fujita

The multiplication of USCIs (Eq. (5)) over all of the orbits obtained by Eq.
(1) produces a subduced cycle index (SCI) for each subgroup (H,) as follows:

Cy v
= H [ IEI ([dqr)‘qur
p=1Lr=1

218, 1a,) = T (ZGHH,) LBy 10, )1

Vs Up .
= p=
] B r];ll (tdq,)

CH

Y vpOpgr

(6)

for g=1,2,...,Cy [12]. The concrete SCI can be obtained from a table of
USClIs such as Tables 1 and 2.

Table 2. USCIs for T, point group

G G C, G S, D, Gy, G, Dy, r T,
T(/C) st sP 532 o T s§ 8% ss 53 sh s
(GONNCEy ) 0D (c§ (YN CH (c?) CH 01 (20
T(/C)  sf sis3 S8 53 533  s3  sisk 3 53 s S
@) @163 (3 ®3 (c3¢d) B9 (3D (i (c3 ®3) (o)
T,(/C) ¢’ 53 sis3 53 53 53 353 5386 Sasg S12 S12
6P 0 @) ¢ (@ (03 (@) (alce) (ascs) (b))  (a)
T,(/G) s s 53 sis3 s si 5 55 Sy 55 S
1,050 (2? (23% (633 (I;?b§) (623) (1;3) (c3 (e266)  (cs) ®3 ()
FAVE Y S1 S1532 $3 52 5154 82 $254 S¢ 5254 S S
T,(D,) ({’S? (l;%b%) (gg) (bzg) (‘;%"4) (I;%) (03204) (c6) (03204) (bzs) (as)
al/s 51 51 S3 53 532 Sy $2 S¢ $3 53 S
(I (c3 ®3) (c3 RN (ce) (c3 ®% ()
T,(/Cy) st 5153 sis3 53 5254 53 5754 53 5254 S Se
@) (13 (@ich) (I (c2c) (B3 (@)  (@3) (@)  (Bs) (o)
T,(/C) st 53 sts, S183 S4 Sa 53 5153 54 Sa S4
VI CE)) (afc)) (b1bs) (o) () (@ (aa3)  (a,) (bs) (@)
T,(/D.) i 53 5152 S3 5182 s 5352 S3 5152 53 S3
CH *3 (@) (B3) (@e) &} (@c2)  (a3) (a;cz)  (b3) (a3)
I,(7) s s} S st 52 st S2 52 52 st S2
®hH o1 (e2) G (@) ®hH (e (c2) (c2) CH I CY)
,(/T) s 51 51 S1 51 5 51 Sy 51 Sy 51
b)) (b)) (a)) ®) (@) &) (@) (@) (@) ®) (@)
124 1/8 1/4 1/3 1/4 0 0 0 0 0 0

Z mﬁ
i




Enumeration of non-rigid molecules 311
3.2. Enumeration of mobile moieties

This process is essentially equivalent to that for rigid molecules [12]. Suppose
that a set of substituents are selected from the codomain,

X={x1, X2,...,XIX]}. (7)

If we select |¥| of substituents from X and put them onto the positions of ¥,
such a function,

y:¥-X, (¥

is an expression of the resulting configuration. Since the domain ¥ is divided
into orbits, ¥, (p=1,2,...,Cqx,y=1,2,...,7,), in terms of Eq. (1), we can
describe the function y in detail. If n3) of x,’s (r =1, 2, . . ., |X]) occupy the orbit
(¥,,), the weight (molecular formula) of this function (configuration) is repre-
sented by

Cyg v, |X
we() =11 I"’[l [ x5, (9)
p=ly=1r=

where n$}) is greater than 0 if ¥,, contains x,; otherwise, it is equal to 0.
Obviously, the following equation holds for this case:

Cyg ¥ |X]
IT 11 1 »2 =¥l (10)

p=ly=1r=1

Let g, be the number of such isomeric moieties (y,,) with the weight w, that
are invariant (or fixed) under the operation of H,. Then, g, is obtained by
means of generating functions [12], i.e.,

Lemma 1.
gesq% = ZI(H,; 1) (11)
Jorq=1,2,...,Cy, in which every term of the right-hand side is substituted by

X
tg, = 2, Xir. (12)

r=1

This generating function (Eq. (12)) is here called a moiety-figure inventory. The
number g, contains multiple counting because of conjugate subgroups. Hence,
the net number of mobile moieties (By,) is obtained by

Theorem 1 (enumeration of mobile moieties).

Ch
Qeq = Zl Bé‘pmpq (13)
p=

Jor q=1,2,...,Cy, where By, is the number of H,, w,-moieties, m,, is an
pq-element of the mark table of H-group.

The proof of Theorem 1 is essentially equivalent to that described for the
enumeration of rigid molecules [12].
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When m,, is an clement of the inverse of the mark table, Eq. (13) is
converted into

Cy
By, = Zl 0zqMgp- (14)
a=
This result is alternatively expressed in the form of a matrix, i.e.,

Hl [I2 “ e HC

H

wy [Bun B - Blc,,
(B:p)=wz By, By - Bzc,, > (15)

Wi (Bien Bz 7 Biea

where |£| denotes the number of monomials generated. Each element (B.,)
indicates the number of isomeric moieties, y,, ((=1,2,...,|¢| and
p=1,2,...,Cg). In this enumeration, if H, is proper, every pair of antipodes
is counted once. This fact should be taken into consideration in the next step of
enumeration. The following example illustrates the enumeration of mobile
moieties.

Example 1 (A C,,(/C,) mobile moiety (Fig. 1c¢)). Suppose that the three posi-
tions (O) of Fig. 1¢ are occupied by either X or Y. Then, the given codomain is
X = {X, Y}. If we number the positions sequentially, we obtain a domain which
is expressed by ¥ = {1, 2, 3}. This domain is subject to Cs,(/C,). We construct
the SCIs for this case, using the C;,(/C,) row of Table 1. We introduce a
moiety-figure inventory, s, = X%+ Y¥ into these SCIs to produce generating
functions for g, i.e.,

=X +Y)® for C, (16)
515 =X + Y)X2+Y?) for C,, (17)
s55=X>+7Y3 for C,, (18)
and
s5=X34+7Y* for C,,. (19)

The expansion of these equations affords a matrix (g,,), which is in turn
multiplied by the inverse of a mark table of C;,, i.e.,

¢ C G G, G, C G G,
X1 1 1 1 i 0 0 0 0 0 0 1
X?Y|3 1 0 0 -1 1 0 0}=1]0 1 0 0}.(0)
XY*|3 1 0 0 10 3§ o0 0 1 0 0O
Y11 1 1 i -1 -1 1 0 0 0 1

(0e) the inverse (Bs,)

The resulting matrix affords the numbers of respective moieties, which are
depicted in Fig. 2. All of the mobile moieties collected in Fig. 2 are achiral.
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X )'( X X )l( Y X H Y Y H Y
| !
\i/Z \i/ NI/ \./
C C C C
Weight (w,) X3 X2y XY? Y3
Weight (yy ) Y1u Y22 Y32 Yuu
Symmetry sy Ce C, Gy
Orbit G4, (/C) £, (/¢y C.(7¢) G4, (7€)
C(/C) CA/C)

Fig. 2. Mobile moieties based on a C,,(/C,) orbit

4. Non-rigid molecules
4.1. Unit subduced cycle indices with chirality fittingness for a non-rigid molecule

Suppose that the rigid skeleton of a non-rigid molecule of G-symmetry has |d5|
substitution positions, which construct a domain,
@ ={¢1, 02> PDpa|}- (21)

When this domain is permuted by a permutation representation Py, this can be
reduced into the sum of CRs, i.e.,

Cg

P =} aG(/G), (22)

i=

wherein a, is the multiplicity of the CR, G(/G;). This equation divides the
domain (@) into several orbits,

b, (i=1,2...,Caia=12...,a) (23)

each of which is subject to the ath CR, G(/G,).
In terms of the subduction of the CR represented by

G(/G,) | G, = Z 8,46, (/Gy), (24)

we define a USCI with chirality fittingness for this case as

Z(6(/6) 163 84) = T] 840, (25)
fori=1,2,...,Cqand j=1,2,..., Cqz, where
4y =G, |G| (26)

The dummy variable § is replaced by the variable (a) for the case where both G;
and G are improper; by the variable (b) for the case where both G, and G, are
proper; or by the variable (c) for the case where G; is improper and G, is proper
[19]. Even if two or more orbits are governed by the same CR, they can take
different kinds of mobile moieties as substituents. Hence, the dummy variable
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should be dependent upon the respective orbit. This is designated by the symbol
849, in which the superscript (i) indicates the dependence upon the ath G(/G,)
orbit, i.e., ®,,. In this case [12, 20, the corresponding subduced cycle index (SCI)
is expressed by

N Ce & .
ZIG;; 3§ = [] 11 ZG(/G) | G;; 85)
i=1 a=1
(o; # 0)

3

= 11 H[kfjl(ss,j})”vk] (=12...,Co). (2D

i=1 a=1
(@; % 0)

4.2. Enumeration of non-rigid isomers

A non-rigid compound is regarded as a derivative of a G rigid skeleton, in which
the ath G(/G;) orbit (®,,) is substituted by H moieties, as is shown in Fig. 3.
The mobile moieties are enumerated by Theorem 2 with respect to every @,,.
Hence, all of the participants in Theorem 2 are dependent upon the orbit (®;,).
These dependences are denoted by such a superscript (i) as appears in HJ®, etc.

Suppose that appropriate moieties are selected as substituents from a set of
mobile moieties enumerated in the preceding section. In general, mobile moieties
are either achiral or chiral depending on H{®. We thus consider a set of
|é] x Cgaw moieties represented by

Hs:‘a) Hgia) v Hg?z(m)
wi Yy (ll?) y (1,%) e y glz')ﬂ(iu)
YP=w, |y yH - 8w | - (28)
i i) . i
wy | Y v Yiicaao

Note that we select a representative (y2) from each set of w,, HS®-moieties,
since these are presumed to have the same weight. The number of such
we, H®-moieties has been given by Eqgs. (14) and (15). Since there are the

Rigid Mobile
skeleton moiety
(i) liot)
P L YPH (/HP ) Fig. 3. Schematic representa-

Gl/G;) tion of a non-rigid compound
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corresponding antipodes for the respective isomeric moieties, we should consider
another set of mobile moieties, i.e.,

i 23 I
H{» H{* H® .,
w | 7R IR o 5w
YP=w, | 5% 7% - y%’?,,m) , (29)
5 ) . R
Wi | P B P

where each § is the antipode of y¢?. If 7§ = y{, this represents an archiral
moiety. Hence, we construct an effectlve set of mobile moieties as follows:

Y = Yo P, (30)

We then consider a function,
f:9,—>Y®™ (31
fori=1,2,...,Cgand 2 =1,2,...,a. This function corresponds to a non-

rigid derivative. If, in this function, an orbit ®,, contains n{% -, of y¢2 and #{% )
of 79 the weight (Wy) of the function ( f) is represented by

r
Ce o
wo(f)= I1 H[ H H(yg“’)""“)n 1‘[ H(y‘a)ép)"*eﬁ?n] (32)

(o # 0)

where

n® . >0, if @, contains y{?; otherwise =0
and

A% >0, if @, contains ¥ ; otherwise = 0.

The subscript () is a descriptor for differentiating the weights.
The following lemma can be obtained by a slight modification of the method
described elsewhere [20].

Lemma 2. Let 0, be the number of derivatives with the weight (W,) that are
invariant (or ﬁxed) on the operation of G,. We can estimate o, in terms of
generating functions,

; oy Wo = ZI(G;; 852) (33)

forj=12,...,Cg, in which every variable of the right-hand side is substituted by
figure inventories,

Cylio)
ap= § TEQOE fors=a (34
p=
improper
. Culn Chlia) _ '
by = Z ZBga)(y(za))d,k + Zl ng‘;‘)(yg’;;‘))dfk
p=1 p=
improper proper
CH (i) . .
+ X Y BRGE)* for $=b, (35)
p=1 ¢

proper
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Cyia) Cyy (i)
= ¥ LBPOLIH+2 T TLBYOEIE)E® fors=c. (6
iml;roper ¢ p’;'oper :
The summation over p is restricted within either improper or proper point
groups according to the indication shown below the symbol. When all y{2°s in
W,(f) are replaced by 7%°s and vice versa, the W,(f) is presumed to convert
into W,(f). Since the resulting molecule is antipodal to the original one, we
should sum up the coefficients of Wy(f) and W,(f) in order to produce ay,.
Note that the present enumeration is concerned with every pair of antipodes.
Now we arrive at

Theorem 2 (enumeration of W, G,-isomers). Let Ay; be the number of Wy, G-
isomers. This is calculated by using 64 (Lemma 2) by means of

Cq
6=y AuM; forj=1,2,...,Cg, (37)

i=1
or inversely,
Cg _
A9i= z o.GiAin for i=1,2,...,Cg, (38)
=1

wherein Mj; is the ij-element of a mark table (M;) for the G-group and (M;;)
denotes the inverse of the matrix (M).

For illustrating Lemma 2 and Theorem 2, we further examine the case of
Example 1.

Example 2 (enumeration of isomers based on 1). We assign dummy variables
V14» V22, V32 and y,, to the mobile moieties counted in Example 1 (Fig. 2). Since
this case contains no chiral moieties, we are allowed to consider § to be s in
Lemma 2. Thus, we obtain a figure inventory,

Sa=Viatyh+yh+yis. (39)

by means of Eq. (20). Since the rigid skeleton (Fig. 1b) is subject to T,(/C,,), the
T,(/C,,) row of Table 2 is selected to afford the following SClIs:

5t = (Yt v +y+yu)t for G, (40)
3=+ y5+yh+yi)* for C, and C,, (41)
51 =(Via+Vn+yn+ 1)+ yh+y5+ i) for C,, (42)

518 =(Via+ Y+ Y +yu) ¥+ yh+yh+yis) for G and G, (43)
and
s4=y‘1‘4+y§2+y§2 +)’i4 for S,, Dy, Dy, T, and T,, (44)

according to Egs. (27) and (33). These equations are expanded and the terms of
the same powers are collected. In the present case, the terms are classified into 5
types, which are designated by the following type index, [4) for yi,, etc. (4
terms), [31] for 33,75, etc. (12 terms), [22] for y3,y3,, etc. (6 terms), [211] for
Y34V Va2, etc. (12 terms), and [1111] for y14¥25 V3544 (1 term). The terms of the
same type have equal coefficients to each other. Table 3 collects such coefficients.

Table 3 is considered to be a matrix, which is in turn multiplied by the inverse
of the mark table (Table 4). The resulting matrix (Table 5) shows the number of
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Table 3. Coefficients derived from generating functions

mdx ¢ ¢ € C S D, C, C, D, T I,

[4] 1 1 1 1 1 1 1 1 1 1 1
{31} 4 0 2 1 0 0 0 1 0 0 0
{22} 6 2 2 0 0 0 2 0 0 0 0
{211] 12 0 2 0 0 0 0 0 0 0 0
[1111] 24 0 0 0 0 0 0 0 0 0 0
Table 4. The inverse of the mark table of T,

T, T, 7, T, T, T, T, T, T, T, T,

(c) (C) (C) (G (IS) (D) (/G (/C) (D) (T) (/T,)
(o + 0 0 0 0 0 0 0 0 0 0
c, -1 1 0 0 0 0 0 0 0 0 0
c, i 0 1 0 0 0 0 0 0 0 0
¢, -1 0 0 1 0 0 0 0 0 0 o0
S, 0 -1 0 0 1 0 0 0 0 0 0
D, P 0 0 0 1 0 0 0 0 0
G, i - -1 0 0 0 i 0 0 0 0
C,, 1 0 -1 -1 0 0 0 1 0 0 0
D, )} i 0 0 -1 -1 -1 0 1 0 0
T 1 0 . 0o -1 0 0 0 1o
T, -1 0 1 i 0 i 0 ~1 -1 -1 1

Table 5. Enumeration of isomers derived from 1

Index C, C, C

4]
[31]
[22]
[211]
[1111]

-0 o oo
oo oo
O~ OO o
[ R P I =]
oo oo o
OO OO0
oo =0 O
(== =
(=R = = I ]
[ ]
[ = e

isomers of each type and each subsymmetry. Figure 4 depicts all 35 isomers
(35=4+124+6+ 12+ 1), each of which is denoted by the type index and the
point group of the respective rigid skeleton. In this case, the T, C;,, C,,, C,, and
C, symmetries of the rigid skeletons corresponds to the type indices, [4], [31], [22],
[211], and [1111], respectively. It should be noted that the symmetries of such
non-rigid molecules are designated by extended wreath product (EWP) symbols.
For example, the two [4]-structures listed in Fig. 4 [21] are denoted as
T,(/CC5,(/C))] and T,(/C:)IC.(/C,, /C,)]. If we assign each molecule to the
point group of its conformation of the highest symmetry, the T,(/C;,)[Cs,(/C;)]
molecule would belong to T, symmetry. On the other hand, the T,(/C;,)[C.(/C;,
/C,)] molecule has D,; symmetry in its conformation of the highest symmetry.
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X"Y, XYﬂ X10Y2 2Y10
x 12 :
Y12
T, [4] G, 311 | G, 122] C,, 1311
x%y3
X3Y9
C, (211 Gy, (31] Cy 1311
X8y 4
x4y®
C 21 ¢, 21 C, 122]
X7YS
X5yY7
C, 1211) C, [211] [211] Cy, [31]
¢, 11111] C,, [22] Cyy [22]
G, 311 G, [31]

Fig. 4. Isomers derived from 1

If all yg‘“)’s and 7% (p=1,2,.
Lemma 2 is converted into a more convement form:

, Cyan) have the same weight (W),

Lemma 3 (modified enumeration). The variables (a%?, b$?, and ¢ $9) can be

rewritten for the present case:
af) =L wg % for $=a,

(45)
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b§w = Z Kea (WD) % + 2 Z Kk (W% for § =b, (46)
and
e = L eawf) W +2 T ) for § =c. (47)
where K, and k;, are represented by
Chix) )
ko= Y BEY (48)
p=1
and improper
Cy (in)
Z B, (49)

proper

For illustrating Lemma 3, we again treat the case of Examples 1 and 2 in
detail.

Example 3 (enumeration based on 1). Since all of the mobile moieties counted in
Example 1 are achiral, we can use the symbol (s) in place of §. From the data
of Eq. (20), we obtain x., =1 for all w,. Hence, Lemma 3 yields a figure
inventory,

=X+ XY+ XYH+ Y (50)

for this case. This figure inventory is introduced into SCIs which are derived
from the T,;(/C;,) row of Table 2. Thereby, we obtain

st=(XP+ XY+ XY+ V3)* for C,, (51
2=(XS+ X*Y2+ X°Y*+ Y9? for C, and C,,, (52)
sis, =X+ XY + XY2+ YHHX + X*Y? + X°Y*+ Y% for C,, (53)

5155 = (XP+ XY + XV + Y)Y X+ XY+ X°Y+ Y°) for Cyand Cy,, (54)
and
S4=X12+X8Y4+X4Y8+ Y12 fOI‘ S4, Dz, D2ds T, and Td' (55) ‘

The expansion of these generating functions and the collection of the terms of
the same power give such coefficients as listed in Table 6. This table as a matrix

Table 6. Coefficients derived from generating functions

a 6 ¢ G oos b G G, D, T I,

X2,y 1 1 1 1 1 1 1 1 1 1 1
X'y, xy! 4 0 2 1 0 0 0 1 0 0 0
X0y2 x2yo 10 2 4 1 0 0 2 1 0 0 0
x°Y3, x3y° 20 0 6 2 0 0 0 2 0 0 0
X8y4, x4y® 31 3 7 1 1 1 3 1 1 1 1
XY, x3y7 40 0 8 1 0 0 0 1 0 0 0
Xxoys 44 4 8 2 0 0 4 2 0 0 0
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Table 7. Enumeration of isomers derived from 1

Term C, ¢ ¢ ¢ S, DD, C, C, D, T T,
X2 yr 0 0 0 0 0 0 0 0 0 0 1
XMy, xyy 0 0 0 0 0 0 0 1 0 0 0
Xwy? x2ylo g 0 0 0 0 0 1 1 0 0 0
X°73, X3y° 0 0 1 0 0 0 0 2 0 0 0
X3Y4, X4Y® 0 0 3 0 0 0 0 1 0 0 0
X'Y5, x3y7 0 0 3 0 0 0 ] 1 0 0 0
Xoys 1 0 0 0 0 0 2 2 0 ] 0

is multiplied by the inverse (Table 4) to afford Table 7, in which the value at the
intersection of each subsymmetry column and the term X™Y” row indicates the
number of the C;X,, Y, -isomers with the subsymmetry.

Figure 4 also illustrates these results, which are designated by X™Y". Al-
though Examples 2 and 3 contain no chiral mobile moieties, the present method
can be applied to a general case that involves chiral as well as achiral moieties.

5. Conclusion

Unit subduced cycle indices (USClIs) introduced for enumerating isomers derived
from a rigid skeleton [12] are proven to also be effective in counting non-rigid
isomers, where the non-rigidity stems from rotations around bonds, after some
modifications and extensions. Thus, a given non-rigid skeleton is divided into a
rigid skeleton and mobile moieties. The latter moieties are considered attached to
the vertices of the rigid skeleton. This formulation allows us to apply the USClIs
to the mobile moieties and to the rigid skeleton for enumerating such non-rigid
molecules.
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Each structure in Fig. 4 corresponds to a pair of molecules which are produced by interchanging
open circles and solid ones



